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Abstra-t

Issues regarding confidence and tolerance intervals are discussed within the

context of educational measurement. Conceptual distinctions are drawn between

these two types of intervals; and examples, under- various eLror and true score

models, are used to compare such intervals. It is shoWn that there tendS to

be only small differences in tolerance intervals under different true score

models, It is also demonstrated that cillilidence and tolerance intervals are

no: only quite distinct conceptually, but also can be very different numerically.

Points are raised about the usefulness of tolerance intervals when the focus

is on a particular observed score rather than a particular examinee.
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r, r-oci-uct-ion

Through the use of confidence interVala for true scores, one can diScOurage

interpretations of obSerVed,teSt scores that are too literal. Such an interval

JISO proVideS a gauge for the potential error associated with a measurement pro

cedure. This paper discusses confidence intervals within

the context of educational measurement, and contrasts them, conceptually and

through numerical examples; against tolerance intervals. A major portion of the

paper compares tolerance intervals that are based nn various true score models.

Some fundamental issues regarding true score confidence intervals are dirs

cussed here So that distinctions can be drawn between various interpretations Of

these intervals, and so that clear contrasts can be made with true score tolerance

intervals. Tolerance intervals, as such, have not been previously suggested for

true scores; although intervals with the same or similar form have appeared in

both the early and recent literature; For example intervals around the familiar

regressed score estimates can be viewed as tolerance intervals under certain

assumptions. Also; true score tolerance intervals can resemble Bayesian credi-
.

bility intervals; but because true score tolerance intervals fall within the

framework of the classical regression model, the two approaches are quite distinct

Ionceptually.

Generally; confidence interval procedures are designed to cover; with a

7.nosen probability; the value of a parameter. It is often emphasized that a rea-

lized interval, i.e., one that is based on a particular Set -of observations or

realized sample, either does or doeS not cover the value of a parameter; and the

interpretation of a realized confidence interval must be in terms of the procedure

on which It is based. An interpretation that is often suggested 4 that a.conii-

ice interval otcedure Will, Over repeated pplications, cover a parameter a

,:hosen proportion or the time:
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In a measurement context, a realized confidence interval for a particular

examinee is often based on the ob8erved score obtained by that examinee and a

standard error of measurement that is estimated front a large sample of examinees.

Typically; moremore than one obSerVed test score is not available for a particular

examinee; but we Can interpret a confidence interval procedure for that exami-fee

in terms Of his /her hypothetical distribution of observable scores. The Mean or

ekpec:ed value of this distribution is the parameter of interest; his /her

tr-ie score is the parameter to be covered by a confidence interval procedure.

The aSSUmptiOn that the standard error of measurement--the Standard deviation

of the hypothetical distribution--is the same for all examinees justifies the use

of A Dingle estimate of this standard error for constructing confidence intervals

across examinees. But a weaker Claim could be made about the overall confidence

interval procedure which does not depend on thiS assumption. Instead of claiming

that a confidence interval procedure covers a particular examdnee's true score

_

probability,with a chosen robability, it might be claimed that on average" such a procedure

:overs the true scores Of a population of examinees a chosen proportion of the

time. This average probability is taken over the examinee population and allows

:or the poSSibilitY that a confidence interval procedre for a particular examinee

does not have a coverage probability equal to the average probability across examinees.

The -average coverage claim is explored in this paper in order to determine the con-

ditionS that make it accurate.

The issue or average coverage of a confidence interval procedure raises other

issues regarding interval estimation of true scores In a measurement Situation

in which potentially many intervals are reported, it-seems natural to deScribe

the statistical properties of the overall procedure of setting intervals for some

?opulation or examinees, rather than restrict attention to the properties tor an

isolated eXaminee. Consider the typical situation in which all examinees with
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the same observed score receive the same interval. what seems of special interest

is the probability of coverage of true scores for an interval cased on a particular

observed Score. .More precisely, we can ask: What is the proportion of the true

Score diStributibn, coaditibrial on A particular observed score, that is covered by

an interval based on tUat observed score? This is to be distinguished from the

interpretation of a realized confidence interval based on a particular observed

score, which must be in terms of the confidence interval procedure rather than

the realized interval. In a measurement context; there is a distribution of true

scores associated with a population of examinees. For this reason, we can inter-

pret an interval based on a particular obSerVed Score in terms of the conditional

(oa that score) diStributiba of true scores rather than in terms of a particular

eXamiaee'S true score. Thus, we can design an interval to cover some proportion

or the conditiOnal true Score diStributiOn.

An interval deSighed to cover some proportion of a distribution is usually

referred to as a tolerance interval; Such intervals are the major focus here.

Because tolerance intervals for conditional true score distributions require a

"strong" true score model (hn explicit specification of the joint distribution

of ;jserved and true scores), four such models are used for comparing the inter-

vals they produce. The comparisons, which comprise a major portion the paper,

are h.ised on a varity of test characteristics adapted froM standardized tests.

Similarly, ,:onfidence intervals from three error modelS are compared, and are

then contrasted With tolerance intervals.



Confidence Intervals for True Scores

Considered in isolation; the process of making an inference about a particu=

Lar examinee's true score suggests that a confidence statement can be a useful

part Of the process. Wrhet we foCua on examinee a, we are interested

in a parameter 73=-the true score of that examinee. With T
a

defined as the mean

.)f observable scores , X. for that examinee, it seems natural to attempt to ac-

lUire information about the distribution of X . And; a confidence interval procedure
a

seems to be a succinct method for expressing such information; For example; the con-

EidenceStaterilentEqL(Xa = 1 a ; where L and U are variables depen-

dent on the random variable Xa (and possibly other randOm variableS) and 1 = a

is the confidence coefficient or the probability that potential intervals cover

can provide information about the distribution of X- and the accuracy with
a

which Y,
a
measures

Obtaining enough inrormation to feel comfortable in raking such statements

mi4ht rediire Several observations on examinee a. But in a measurement context,

certain factors usually preclude such an approach. Because of the difficulty in

obtaining several observations on full test forms; and potancial problems with

practice, fatigue, motivation; ecc;7 more than two observations on any examinee

jre rareiv obtained. Instead, properties of the overall measurement procedure,

based on a population of examinees, are used to latimate conficetce intervals for

each examinee. Strong assumptions could be used to justify a Conficence interval

procedure for a particular examinee. For example, the error variable for examinee a;

= _
a

, could be assumed normal with the same variance, 7 fOr all examinees.

An accurate estimate of a; could then be obtained; say; through the administration

or two parallel forma to a large sample of examinees; This would allow a confi-

dence statement of the form P(Xa -
e a

X
a

.co-) = I - a to be used for

eXatinee a: Tha c could be determined from a z or t table depending on the sample

size fcr o
e
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Still stronger assumptions might be used so that even estimation of rj-! is

avoided: For example; with number correct scoring; the binomial error model

Lord 6 Novick; 1968, chaps. 11 S 23),is sometimes viewed as appropriate. If

this model holds for an examthee; we can simply use the examinee's observed score

and the number of items in a test to enter.a table of confidence intervals for a

binomial parameter; This would provide a confidence interval for the examinee's

proportion correct true score.

'.peak Claim About Confidence Tntervals

Such strong assumptions allow the sarong claim that is made about a cOnfiz

dence interval procedure for a particular examinee. However, if Such assumptions

are unwarranted; one could Still make a weaker claim about the confidence interval

prOCedure. For example, it might be claimed that, on average; intervals of the

.general form X + Z--*7- cover examinees' true score' with probability 1 a ; where
e

the :.iVerle is taken over the population of examinees for which such intervals are

reported, And where ::jh refers to the 1 - :a2 cumulative percentage point of the

standard normal distribution. In this case, the confidence interval procedure for

particular examinee can be associated. with a coverage probability that is greater

or Less than 1 , but the average across examinees is 1 - .

This average coverage is expressed as

a
z,

e
)] = 1 -

where E is the expectation operator over examinees, the probability statement is

tia covera4e probability for eaMinee a of X. ± z a , -and -12 is the average
a -J./2 e e

measurement error variance for the popuLaticJ of examinees. One way of writing

this in integral f7177

iF (e) = 1

1 ()

(2)
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where F (e) is the cumuiative diStribution function of e- and the integral is in
a a

Stielcjes fOrM to elloW for diScrete 0 (both end points are included in the itite-
a

gration). The summation is over the N examinees In the population for which the

average coverage claim is made: We can switch the order of integration in Equation.

that

N

_ dFd(e) = 1 - a (3)

,ow the limits z/,; Je can be viewed as points on a mixture of the distribUtions

of the error variables, or the marginal diatribUtiOh of error. Thus, the average

-era 2,e claim simply states that the area in the marginal distribution between

two points ± z is

defined, the mean Of
a

for each examinee zero, 80 th080 t..-/o points

are equidiStant from the mean. Of course, in order for this average coverage

,ilm to hold at every value of z
a/_

; normality of the marginal error distribution

L3 F.0wPvei if we only make the toliowing claim, "X ± 1.96 7 has an

Jverage coverage of .95, approkimately, u many distribution shapes Will do.

If we just assume that the marginal distribution of error has one mode, we

can use the CamP=Meidell inequality (Rao, 1973, p. 145) which states that

p( x - \,:)

4(1 + S2)

where is the mean; is the standard deviation; s is the absolute value of the

number of standard deviation units that is from the mode, and Say, for

example, a = then average coverage of X L 1.96 7 is greater than .85 for any
e



Ini-modal distribution: Thus; with an accurate estimate of 7; (the averages Of

thalyidual error variances) and z_- around 1.96, one might feel comfortable in

iveragE., ;:overage claim around

eArly., in Average coverage claim is fairly weak. it describes a propert

tne °Vera': interval estimation procedure in a measurement context, but does'

Little to deSCribe the limitatiOn of the information from X- about examinee a's
a

s )re. Nor does it make any claims about what to expect at different Score

.,0Hts. If evidence is aVailable indicating that error variance differS along the

score scale, then an average coverage claim seems especially uninformative: How-

ever. consideration of such differences when constructing intervals could allow a

im o average coverage for different ranges of observed scores:

of true mores Conditional on Observed Score: tolerance Intervals

That an average coverage claim over different parameters (i.e., true Scores) is

,iensible in a measurement context raises the question of whether we are always

interested in an interval estimate for a particular examinee: Under circumstances

in which a particular examinee's score is being interpreted by a careercounselor,

or classroom teacher, a proper confidence interval seems quite useful in combi-

nation with other information about that examinee. In contrast; the process.

Of ..-core reporting, in whiCh large nUmbers of examinees are given the seine score

And interval. is not intimately concerned with a particular examinee. Rather,

there is a distribution Of true scores that is referenced by a particular ob-

served score: Thus; in a measurement context We can interpret an bbSerVed

score in terms of the conditional distribution of true scores associated With it.
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In a typical situation in which the group of examinc,s with t e same ob-

served score receives the same interval estimate; it seems natural to inquire

about the proportion of the distribution of true scores given an observed score that

is covered by the interyal; In other words; for an observed score x (realized

value of the X variable that represents observable scores for the population of exam-

inees); there is a proportion of the conditional distribution of true scores

that iscdvered by an interval like x c de . This proportion, whiCh is a

conditional (on x) probability;is conceptually distinct froM a confidence Cbeffi-

cient; If we condition on an observed score-, then a confidence interval does or

does not cover a particular examinees true score; i.e., the conditional prob-

ability is not in reference to any particular examinee. Later, intervals of the

ra x
e

are evaluated in terms Of the conditional distribution of true scores;

Tolerance Intervals

Probability statements about conditional true score distributions require

strong assumptions or data that are usually not available. In particular; the

joint distribution of observed and true scores is needed. For expository purposes;

we that the distribution of error conditional on true score is normal with

mean zero and a variance that is constant across true scores. In addition, true

score is assumed normal. Thus, X is the sum df two independent and normal Vari-

ables and e; where is normal(.,,, d), and eiS nOrtal(0,

Under this model it is well-known that the conditional distribution ).

giVen X = x is normal(:`:{ (1 02)U; D'7-) where d = CORR(X; -)- = 1

We will refer to the mean of the conditional distribution as

7(x) = + (1 u (4)

which is the familiar regressed score estimate of true ii..,Coce (See Lord

Novick, 1968; pp; 64-69) .



Since the conditional distribution of r given. x is normal;

7(x) ± z
e
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(5)

is an interv-aI which covers the central 100(1 - a)% of the conditional true score

distribution associated with x (this holds for all values of X)'. It is referred

to as central because both tails of the conditional distribution, not covered by

the interval; contain 100*-a/6% of the true scores. A central interval, in the

case or the normal, is alSO the ShorteSt interval that covers 100(1 7 2)% of

the conditional distribution.

SUCh intervals are quite distinct from confidence intervals. As noted; a

confidence interval procedure is designed to cover; with a chosen probability,

some parameter of a distribution. In contrast; the above interval is designed

to cover a chosen proportion of the distribution of a random variable. Intervals

of this type are referred to as tolerance intervals. Proschan (1953) provides

some basic comparisons between tolerance and confidence intervals.

Sefore discussing some issues regarding the estimation of tolerance intervals,

some comparisons will be made between confidence and tolerance intervals in the

-context of measurement; Stanley (1971, pp. 379-382);among others, discusses an

interval similar to that of Equation 5 and appropriately refers to it as a "confi-

1
jcnc. interval in a loose sense. Also; a few of the following points have been

1;:hed on in the measurement literature, though from a different perspective.

1 The difference between Equation 5 and his Equation 19 is his use of the t

distribution insteal of the z and his use of estimates of the parameters u; ,-;`;

and ; Estimation issues for tolerance intervals are complex and have not been

sotred ::or the case where the variable of interest is unobservable. Thus use of

L!-;tribution just provides wider intervals than the
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The justification giclen above for using a confidence interval in a measure-

ment context is that a score interpretation situation calls for isolated interest

in a particular examinee's true scOre; A mistaken interpretation of a repo,.ted

or realized confidence interval based on a given score might then be that it pro-

vides a range of probable values for the true score of that examinee. Instead

of considering a reported confidence interval as an indication of the accuracy

with which an examinee's true score is estimated, its meaning is diStorted to

include consideration of the likely Values of true scores in the pOpulatiot of

9
examinees for a :riven Score X.- Within the contest of classical confidence inter-

vat Such an interpretation makes little or no sense because, again;

the Value of a Single parameter is of interest: Within a measurement context;

however, there is a diStribution of true scores of interest; so that such an in-

terpretation may be desirable. But confidence intervals are not designed to pro-

yide such interpret-atiOns, and they would lead;' at the least; to inaccuracies.

Consider again the model with normal and independent error and true scores

Lind no two examinees have the same true score). A confidence interval

the general form X ± z y would, for every examinee, have a confidence
/: e

,:oefficient of L i.e., the probability that an inter-Val of this form covers

an examinee's true score is 1 a . In contrast, a reported confidence interval

used on a realized value of X, x , either covers an examinee's true

score or does not. Now, by considering the population of examinees; this same

It is true that Bayesian approaches allow isolated interest in an

examinee's true score and a statement about probable values of than true score.

However; the nature of probability changes; and, in any case, a classical con-

fidence interval procedure would not be used, typically.

1.)
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reported interval will, typically, cover more or less than 1 - a of the true

'::ores that can be associated with x. The interval x Z- a_ covers somewhat
a/2 e

more than 1 a of the true scores associated with x; when x is close to u

and less when it is Ear awav It is easily shown that the average proportion

,:overed, taken across the variable X, is in fact 1 a

In order to determine, under this model, the proportion of the conditional

true score distribution covered by a realized interval of the form x a
:t/2. e

we need only specify the reliability (D2) and the number of units x is from

Let us take .)21 = .8, and for simplification z
ci

= 1 (i.e., 1 - a = .68).

When x = u, the realized interval X ± u
e

covers the central 74% of the distri-

butionoftruescoresassociatedwithx. x u = a X 4- U
e

covers 68% of the conditional true.score distribution, bUt not the central 68%,

i.e., the areas in the tails of the distribution n t covered by the interval are

Uneual. ',Then x = + ?a- or x = -
'

x C- covers only 5K: Of the
x x e

-clorlditionel true score distribution- -again not the central 53%. To see this;

consider that, under the model; the area between x - and x +
e

is being

evaluated for the distribution of r given x which has mean o- x + (1 - .7,2)u and

variance . Thus; except when x = , realized confidence intervals will

be centered farther from u than the mean (center) of the conditional true score

distribution. In contrast; tolerance intervals are centered on this mean. Even

t:-Iough on average the proportion covered IS 68% for this example; one-third of

the confidence intervals will cover leSS than 68;'; OF the conditional true score

ditribUtiona. Thus for this example, at least, realized confidence intervals

Would be very misleading if interpreted as tolerance intervals.

Another related criticism against interpreting the interval x + z
/1 Je

as a tblerarice interval for x is that it can be considered more appropriate for

observed scores that are farther from u (more extreme) than x; This is because

th.Ls interval covers a greater proportion of the conditional distributions of
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-c:r1A scores for scores more extreme than x than it does fOr x itself. Again,

interVal is not centered on the mean of the conditional true Score diStri=

button. Specifically, there is an observed score X* Such that P(x - 2-
a/2

,-
e

. [-r. --f- z 0T-IX . x*) takes on the largest value, and this x is more distant
A/2 e

f:'zl than is x. The value of this probability is also larger for all values

been x* and x than it is for x; and the same holds for more extreme scores

bt-ett..-een 2x* - x and x*: The value of x* is u (x - u)/o2 To understand why

cHe probability is largest under x*;* consider that e conditional mean of r

x* is x; i.e:, x* makes the interval x ± centered around r(x*).

Arld, the values between 9X* X and x are also associated with larger probabili-'

-cilies than x simply because their conditional means are closer to r(x*) than is

These comparisons have been made within the context of the normal error - normal

or model. However, similar, though perhaps not as strong, statements could

be :jade for other models. We can expect, for instance, that for most reasonable

tro score models; x will always be further from u than the mean of T given X
3

.

Two Perspectives on Tolerance Interval Estimation

When parameters of a distribution are not known precisely, estimation of

tol,rarice intervals have been found to be fairly simple or quite complex depending

ozn, among other things, the properties required of the estimator. There are two

Consider the binomial error model and a true score distribution that is

gsstAined uniform between.0 and 1. The mode of the conditional distribution of 7

x is then x/n (Novick & Jackson; 1974, p. 114). Since the highest density

CEegi.on converges on the mode, this provides a contrast to comments above. However,

the orliform is an interesting prior but is unrealistic as an empirical distribution

fir crue scores. Further, central tolerance intervals converge on the median rather

clatl the mode. If
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alternative properties that are discussed. One is that the interval estimator

H.)ver an average_ the.desired proportion of the distribution. The desired pro-

portion is then referred to as the expected coverage. For the normal univariate

case; Proschan (1953) provides such an estimator: The expected coverage require-

ment of tolerance intervals for the conditional distribution of true scores

(given x) can be written as

C( x)f f(7EX)d.l. = 1 ; :t

L(x)

Where U(k) and L(k) repreSeht Lipper and lower limitS of the tolerance interval

for given x. In the discussion above, U(x) = 7(x) + z a and L(x) = 7(X) - z- u
a/2 e a/2 (

But wiThout knowledge of u; and
'

U(x) and L(x) are random variables that

depend on estimates of these three parameters. Thus, the expectation is over

:t x) 3nd Lt

the other alternative property places a confidence statement on the pro-

por:ion of the distribution covered by an estimator. It place8 a probability

)11 cite event that a tolerance interval estimator covers at 1=east_ the desired

proportion of the distribution: In terms of the conditional distribution of

true score (given x) this can be written as

P

Where is the confidence coefficient. When the parameters of the conditional

distribution are assumed known; N = 1. Otherwise the probability depends on

x) ane Lx,. As an example, U(x) and L(x) , as estimators of tolerance

limits, might be cho:en so that the probability is .95 that the limit estima-

tors cover at least 68% of Lhe true score distribution associated with x.
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Probability of coverage estimators receive more attention than expected

coverage estimators, mainly betaUse they provide a more informative statement

about the behaVior of an estimator: Some even defina tolerance intervals only

in, terms of probability of -coverage; Also; probability of coverage is more use-

tul.in a major application of tolerance intervals; namely quality control prob-

Lems. It does, however; create greater complexities, and typically X is close

to I which produces wider intervals than expected coverage intervals. Wald and

Wo1fowitz (1946) first provided an approximation under normality f-or a probability

of coverage estimator. Wallis (1951) solved the estimation problem for the linear

regression model, which has some relevance to our Probleth. :`ore current Work

has focused on simplifying methods and extensions to simultaneous intervals for

the regression case (see,e.g., Lieberman & Miller, 1963):

Tolerance intervals are rarely discussed in statistical methods texts

(Dixon & Ma§§6Y, 1962, p. 199; and Graybill, 1976, pp. 270-275; are two exceptions).

InSteed, the related issue of prediction intervals is often discussed (see e;g.,

Graybill, 1976, pp. 267-270 for prediction intervals in the linear regression model).

Such an interval is used to predict a range of probable values for some future

observation or Linear function of several observations: Note that a I - a pre-

diction interval for a single observation is the same as a tolerance interval

with ekpeCted coverage of 1 - (Proschan; 1953); The key to the identity is

that the distribution of a single future observation is the distribution for which

a tolerance interval is desired.

Because none of the research on the estimation of tolerance intervals con-

siders the case in which the variable of interest is UnobSerVAble, none of it is

directly relevant to the problem at hand. Even prediction intervals for the linear

regression model would not SerVe as an expected coverage interval for the normal

error and true Score model because the basic assumptions are quite different under

the two models.
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Ci_impari_son of Tolerance Intervals Under Four True Score Models_

The focus of this section is on the comparison of tolerance intervals cal-

ciliated under different measurement model assumptions. Since tolerance interval

estimators have not been derived for these true score models, comparisons are

made under the presumption that accurate estimates of model parameters are avail-

able. Essentially; all that is presumed is that large enough samples are avail-

able to accurately estimate the mean and variance of the observed scores. This

is because two of the models need only these two parameters for calculating tol-

erance intervals; and the other two models need only one additional parameter that

does noc seem to play a substantial role in the intervals. It seems important

to focus attention on a comparison of true score models before tolerance interval

estimators are derived because of the strong and sometimes unwarranted assump-

tions associated with each. The effects of differences in assumptions on dif-

ferences in tolerance intervals can facilitate not only an informed choice of a

Model fOr Calculating intervals With large samples but also a choice r the deri-

vation of estimators:

First, the four true score models are described. Equations for calculating

intervals under these models are then provided. This is followed by detailed

comparisons among tolerance intervals based on test characteristics that were

adapted from standardized tests;

DeStp-t_i_on MadeLs

For the comparison of tolerance intervals, the following measurement models

were used: (1) the normal model discussed above in which the conditional dis-

tribution of observed score (given true score) is normal and the diStr_

of true score is normal (NORM); (2) the conditional diStributiot of obse

score is binomial and the diStribUtibt of true score is beta (BETA); (3)

conditional diStribution of observed score is binomial but an angular (variance

stabilizing) transformation provides approximate normality; and yields a normal

=rue Score distribution (BINQRM); and (4) the conditional distribution of observed

Store is compound - binomial but an angular transformatiDn provides approximate

normality, and yields a normal true score distribution (CONORN).
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All tour models have been discussed previously in the literature and except

for the NORM model; they were developed for number correct scoring Lord and

Novick (1968; chap. 22) provide a discussion of the NORM modelespecially normal

and independent error. Although this model was not designed especially for

number correct scoring, it is included because of its convenience, historical

;y:larity, relation to the BINORM and CONORM models, and as a contrast with the

1ther three models.

the BETA modelis discussed in detail by Keats and Lord (1962) and subse-

quentIy in work concerned with mastery testing (see, e.g., Huynh, 1976). Al-

though the beta-binomial com6'1-riatiunisheM3tical convenience, and the re-
/

suiting model depends on just two unknown po'ulation parameters, the fit to

number correct observed score distributions is often impressive (see,

Keats & Lord, 1962)/. Wilcox (1981) reviews competitorS to thiS model

,

and concludes that it frequently gives satisfactory results and that choosing a

more complex model involving additional free parameters can be quite difficult:

Robustness or a methodology based on this model has also been shown (Gross &

Shulman, 1980).

The BINORM model was adopted from Bayesian treatments of estimating true

scores from observed number correct scores (Jackson, 1972; Novick, Lewis, &

Jackson, 1973; and Lewis, Wang, & Novick, 1975; also, Hambleten; SWAminathan,

Algina, & Coulson, 1978, provide a convenient summary). In thiS treatment the

conditional aistribution of observed score given true score is assumed to be

binomial and an angular transformation provides, approximately, a normal error

variable with stable Variance (4n + 2)-1 across the true score range, where n

is the number of items in a test It is also assumed that the angular trans-

fortation rields; approximately, a normal true score variable (or prior in their



Bavesian treatments); This transformation results in an expansion of the true

score scale at the extremes which makes the assumption of normality (unbounded

:ails) much
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less of a-problem than under the proportion correct scale. In addi=

tion; the transformation can account for the skewness that often occurs with

observed score distributions associated with a mean (proportion correct) that

is not close to .5.

Tice BINORM model is similar to the BETA in that both begin with the

binomial for the conditional distribution of observed score. The contrast in

the assumptions about the diStribUtiOn of true score enables examining the sen-

sitivity of tolerance intervals to such assumptions.

The BINORM and CONORM tolerance intervals provide a comparison of a dif-

ferent nature. A in the BINORM model, the distribution of transformed true

score assumed normal for the CONORM. But under the CONORM model, the Conditional

distribution of observed scores is assumed compound binomial rather than binomial;

The two-term approximation to the compound-binomial suggested by Lord (1965)

simplifies considerations in the model. Noting that the conditional variance

under the binomial is n7(1 7); the conditional Variance under the two-term

Approximation is (n 2k) 7(L = 7) Where k is a parameter to be defined .4 Thus;

with k > 0; shorter interVals can be expected under this model; all other things

hein-; equal.

From here on, r can be interpreted as a particular true score or the ran -

Jom variable for true Score, depending on the context,
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The appeal of this approximation in our case is that it provides an alter-
*

native conditional distribution for bounded observed scores and

that the overall error variance (across examinees) can be made to cbtr-c_SpOnd

(with an appropriate choice of k) to an estimate of average error variance o

tained under weaker assumptions. Lbrd (1965) emphasizes the fact that k can be

chosen So that average error variance corresponds to that which would be ob-

tained by using a KR20 estimate of reliability.

The use of an angular transformation with Lord's two-term approximation

was pre-iously suggested by Wilcox (1978). Because the conditional variance is

(ft 2k)r(1 7), a variance stabilizing transformation that is appropriate

for the binomial is applicable here also.

Calculation of Tolerance Intervals

As noted above; we presume that accurate estimates of population parameter§

are available: In other words, we take the liberty of providing details about

calculating intervals given the parameters, While, at the same time, providing the

estimation equations used for the eXample tests that follow: Under the BETA and BINORM

models, estimation simply inV(OlveS OalCUlating a mean and variance of observed

scores. Estimation for the NORM and CONORM models additionally involves the

calcUlation of the Variance of :_tem difficulties: This holds for these two modelS

be-caUSe interest is restricted here to a KR20 estimate of reliability for the

examples provided: More generally, other estimates of reliability could be used

for these two models;

Note that all the intervals that are calculated are for a proportion:

correct true score scale. The obSerVed nutabet correct score is still referred

to as :: For a particular score and for the randnt variable. Thus, a true

score for an examinee is defined as the expected number correct score divided by

the number of items (n).
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The expression for tolerance intervals under the NORM model has been given

in EtuatiOn 5. However, there are slight changes in the expression because of

the change in the true score scale. The conditional distribution of 7 given

A = x is normal[7(X), c;TX J`]
'

Where-1-(k) + kWh 3); = E X/n,

X
= CORR(r, X)2, and se = (1 a TX

)(JX.- . Thus, the lower limit of a tolerance-7n
interval on the proportion correct Scale (the 100*-,:i/2:% point of the conditional

true score distribution) is

, a.
-TX e

and for the upper limit (100 *[1 - :z/2]% point) z plus replaces the minus.

For the example data used here, it seemed appropriate to estimate D-- by
7X

KR2O. Not thad this means error variance is a function of n, as is the case

for the other three models. It also means that the tolerance intervals can be

(6)

expressed in terms of just three population parameters: E X/n,
X/n

and a

-,Ddrameter :-:or the variance of item difficulty, This last parameter will be dis-

,IusSed Later under the CONORM modeL

Under the i:ETA, the conditional distribution Of Y given r is binomial,

and the distri.bution of T iS beta with population Parameters a and b. This

makes the conditional distribution of T given x bete(d ki - x). Using

the usual notation for the cumulative distribution function of a beta, the

Lower limit is (alcuIated by solving

L(a+ b + n x) = -t/: (7)



fbr,L, her L is the point below which 100*a/2% of a beta (a + x, b + n x)

falls. Similarly, the upper limit can be determined by solving

I (a + :c, b + n X) = 1 a/2
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(8)

for C The inverse beta function subroutine MDBETI of IMSL (1979) was used

for the calculations.

Note that this choite of L and U proVide central tolerance intervals. Because

the BETA is asymmetric when its parameters are unequal; shorter 1 - a intervals could

be found than central intervals. However; interpretations of L and U 'would then

vary rrom one x to the next; i.e., the tail areas beyond each limit would change.

Under the BETA model, convenient estimates of the true score distribution

parameters are:

n(1/KR21 1)1.1

= n(1:NR21 1) -

Where 2 is a mean (proportion correct) observed score (see Lbrd & NOVick, 1968,

pp: -,516-517 and pp. 520-521, and not that their "b" differs from ours by n 1):

Since FR21 is a function of n and the mean and variance Of obSerVed Stores,

just theSe to Statistics are necessary for calculating approximate intervals

under the BETA. (Recall that it is assumed that sample sizes are larg( enough

to provide accurate estimates of the observed score mean and variance.)

For the BINORM model, the angular transformation suggested Freeman and

Tukey (1950) is used:

L -1 --x-
[SIN n +

SIN-V"
n +

11)
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Under the binomial, this transformation is considered to provide the most sta-

bility in variance among the angular transformations suggested for this distrt".

bunion (MoSteller & Tukev, 1968), and is the transformation used in most of the

5ayeSiat references given above. The conditional distribution of G (variable for

g) given 7 is, approximately, normal with mean = SIN j. andkvariance

-1
(4n + 2) , and the .y variable is assumed normal. Thus, tolerance limits can

be calculated under the transformation by using the fact that the conditional

itstribution of '( given g is, approximately, normal [y(g); -(c/(4n + 2)], Where

and

(g) = E y + ( E C

= --(4n + 2)1

Thus, a central 1 tolerance interval on the Y Scale is

(g) z (12)

Lt inverse transformation (SIN)-: is then applied to the limits to return to the

)r-L4LriaL true score scale.

The needed mean and variance (E G; 173)can be estimated in a number of

A simple approach is to apply the Freeman-Tukey transformation to the

observed scores and to calculate their mean and variance as estimates of

E G and . Since E y is approximately equal to E G , the mean of transformed

obSerVed scores can be used here alScy
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For the typical situation in which the mean and varian of observed propor-

tion correct scores are already available; a more convenient approach to estimation

emplbys a Taylor series approximation (see, e.g., JohnSon & Kotz; 1969. PO.:28-29)

for E G and . Under the Freeman-Tukey transformation,

and,

E G 4-7.: SIN-1V7 + SIN -1 ,,(T + vY

[16(n + 1)2 [p(1 p)13/2 [q(1 - q)]

1 2p 1 2q

(13)

X
[[p(1 - p)]-11 + [q(1 - q)]-12 (1')

u

16(n + 1)-=

where p = ::n/ (n 1) and q = (;t1 1)/(n + 1). Thus; accurate estimates of = E X/n

and
J.

= n--
/n

are all that are needed for the BINORM intervals.

Calculations for the CONORM model parallel those for the BINORN; i.e.; tole-

rance limits are calculated under the Freeman -Tukev transformation to normal error

Ind true score and then transformed back to the proportion corr

this model we refer to true score under the transformation as

scaLe For

trast to y above; The distinction is made because of a difference in variances.

Lnder the CONOR, the conditional variance of G given T is (n - 2k)/(n2 2n),

apProXimetely. This implies that with k > 0, > c4
YG

5-
Again, this estimate of E G can be used for E y since the two parameters

are approximately equal. However, the following Taybr series approximation can

aloo be used:

E -4- SIN
-1

"VT + 7 (1-27) / [8(--72 -]

where 7: can be estimated from z and For the examples, the tolerance

limits reported in two decimal places do not differ under the two approaches.
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and

Tol,:-ance intervals under the n scale are expreSsed as

n (g)

(g) =

z
s/2

+ 02

[
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2k)/(4n2 + 2n) (15)

- E G) ,

-0-
nG

= 1 - - 2k) / (4n2 + 2n) ] .

The (SIN)-
; cransformatien provides limits on the 7 scale Comparison of Equations 12

and 15 indicate that with k > 0, CONORM intervals will tend to be Shorter and less

regressed to the mean than BINORM intervals.

In addition to estimatini E G and J'd for the CONORM, an estimate of k is

also needed. As suggested by Lord (1965, p. 266),

where

k=

n
S-

j=i

- S7/n]
2n S- (16)

L. being the item difficulty (proportion correct) of the j-th item, and :^1 being the m

proportion correc tt or the sample on which the difficultieS are based. As noted



25

above, this estimate of k makes the average error variance on the observed score

scale the same as would be obtained through a KR20 (Tucker; 1949, expresses KR20

in terms of u, :`,(/-11, and SI ).

Examples

Tables 1 thrOugh 4 provide selected tolerance limits for four different but

realistic test characteristics. Test characteristics refer to the four parameters

sufficient for calculating tolerance limits for all four models; namely, n, E X/n,

; and S- (or KR20), The characteristics used are realistic because they

were taken with one exception; from established standardized tests; and are dif-

ferent because they allow contrasts between long and short tests and symmetric

and skewed distributions;

Insert Table 1 about here

Table 1, with n 35 and E X/n .5, proVidea tolerance limits for Ob§erved

number correct scores of 7, 14, 21, 28, and 35. Columns headed x/n and N.H. Dens.

provide proportion correct scores and the corresponding negative hypergeometric

densities that are associated with the BETA (Lord & Novick; 1968; 131: 515-520);

The three tolerance coefficients, 50%, 68%4 and 95%, were chbsen to provide in-

dications of differences in the conditional distributions at different percentage

noint§. Also, these three cbeffiCierita have had historical popularity (50% for

setting "Probable error" intervals and fOl- the interquartile range, 68% for one

standard error intervals). Note also that the 95% intervals in Table 1 are,

approximately, three times wider than the 50% intervals and twice as wide as the

53 intervals.
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The Sitildrity of the limits of the four models is striking. With the

eXceptiOn Of the extreme observed score, 35 correct, and excluding the limits of

the NORM model, the limits differ by no more than .01.

Considering the NORM model, the largest differences with the other modela

are at the extreme scores. Recall that under the NORM model, intervals for every

observed score are the same width. Because error variances of the -other three

models decrease as true score moves away from .5 (the mean in this example),

narrower intervals are found at the extremes. In Table 1 thiS can be Seen at

the score of 35,and to a lesser extent at scores of '8 and 7. Around the mean,

all four models provide limits that are quite ClOSe.

under the NORM model can be below zero or above one.

Recall that error variance under the CONORM is smaller than under the 3INORM

Notice also that limit

to a degree that is dependent on g2 (or equivalently, the difference between

KR2I and K2O).R The effect of this on the limits in Table I appears to be

Slight but predictable. The intervals for the CONORM model are shorter by

approximately: Also, the differences are primarily reflected in the upper

limits When observed scores are below the mean; and the lower limits when observed

StOres are above the mean; i.e.; these limits, under the CONORM model, are .01

more distant from the mean (less regression) than under the BINORM.

The error variances for the BETA and BINORM mOdela are the same

but the shape of the true score distributions are different. From Table 1, the

effect of this differ,- ce appears to be mainly on the extreme score of 35; The

lower limits under the BETA are cloSer to the mean than under the BINORM and

CONORM. A slight but opposite trend is found at scores of 7 and 28; i.e., the

intervals under the BINORM Are Lght13)- closer to the mean than under the BETA.

3U
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These detailed descriptions of ditterences in Table 1 seem insignificant,

but they do reflect some general patterns of differences that are discussed later;

The example in Table 1 doeS not provide A sufficient comparison of the models;

heca6Se under all four models the true score distribution is symmetric (E X/n = ;5):

In Table '; skewed true score distributions are introduced with E X/n = .75.

Thder the BETA Model, the left skewness introduced by this mean is.reflected in

the negative hypergeometric densities. Of course; under the NORM model there is

no skewness. Under the BINORM and CONORM models; skewness is allowed for through

the expansion; above the mean, of the transformed true score scale.

Insert Table 2 about here

The effects of skewness on differences between the NORM and the other three

models is quite noticeable. At observed scores below the mean (7, 14; 21), the

upper limits of the NORM are further from the mean than those of the other

models. Also, the intervals for these same scores are narrower for the NORM than

for the others, but for Scores above the mean (28, 35),the intervals are wider for the

.'ORN. Comparing this with results from Table 1 (same n), the left skewness appears

to affect the Width of the intervals at scores below the mean; making them wider

than for a symmetric distribution: Also; scores above the mean have narrower

intervals than those of Table 1; This result can be intuitively understood by

considering the density of the true score distribution below and above the mean and

its effect on the conditional distribution on which the limits are based.
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The clear pattern of differences among the BETA; BINORM; and CONORM models

that were found for the symmetric distributions associated with Table 1 are

not as apparent in Table 2; Still, as expected, the CONORM intervals are typically

shorter and sometimes further from the mean. Also, differences among limits

for these three models are again small--just 12 out of 90 possible differences

are greater than .01, and 10 of these are .02.

Table 3 contains intervals that are to be compared with those of Table 1.

The test characteristics for Table 3, rather than b6itig caltulated froM an exist-

ing test, were derived from those in Table 1. Note that the mean and S2 are the

same in both tables, but that n is 25 in Table 3; The observed score variance

in Table 3 was derived by keeping the KR20 estimate of true score variance the

same in both tables and increasing error variance by the multiple 35/25.

Insert Table 3 about here

The increase in widths of the intervals due to the decrease in n can be

expressed algebraically for the NORM. So, under the NORM, the differences in

widths between Tables 1 and 3 follow a simple pattern. For the 50% intervalS,

the differences are .014, fbr the 68%, they are .02, and for the 95%, they are

.04. COnSidering the 95% interval widthS for the 35 -item test, a 13% decrease

in width is Obtained frcm a 40% increase in ti; Also; there is less regression

toward the mean that comes with the higher reliability of the 35-item test;

For the other three models; similar differences are found, but there is less

consistency in their pattern.
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Similar to Table 1; when the limits for the NORM and chose for a perfect

score of 25 are excluded; differences among limits for the three other models are

mainly .00 or .01; There are, however; six differences equal to .02, indicating

that intervals tend to differ more with smaller

Table 4 provides intervals for a 100item test (E X/n = .75). Note that

for-this long test the reliability is below .9. The test characteristics reflect

those of a certification examination that has a small true score variance. The

intervals here are much smaller than in the other tables. For the example in

Table 1 (n 35), the reliability is similar to the 100item test; but it has 95%

intervals that are almost twice the length of those in Table 4. Clearly; the num

ber of items plays the primary role in the width of intervals for all the models

6
considered here.

Insert Table 4 about here

?With the exception of the perfect score of 100, all four models have very

similar limits. This is in contrast to the limits of Table 2 in which skewness

introduced by E X/n = .75 made the limits fOr the NORM quite distinct froth

those of the other modelS. Actually, the coefficient Of skewness under the

BETA is smaller for the example in Table 4 than for Table 2, but the effett of

skewness on the intervals is still noticeable: For example, under the BETA,

scores below the mean are associated with wider intervals than those above the

mean, while the NORM intervals are a constant width.

6
For all four models the error variances depend primarily on n; but recall

chat this need not be the case for the CONORM and NORM models in which one has an

option of using an estimate of overall error variance different from that obtained

from a KR20;

33
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Some general Comparisons

To obtain a more general idea of differences among the models, mean-absolute-

differences were calculated using all the limits from the example tests th Tables

1 through 4 as well as those from three other example-S. Table 5 contains theSe

means which were calculated by contrasting limits for the Six possible pairs of

the four models. As an example, consider the first test depicted in Table 5

(n = 25, E X/n = .5). Here we tind the mean-absolute-ditference between the

lower 95% liMitS of the BETA and the BINORM models is :006. This mean appearF

consistent with Table 3; in which most differences in limits between these two

models are either 0(:) or J211;

Insert Table 5 about here

Each mean absolute - difference was calculated by contrasting limits for a

pair of models at each observed score; and by weighting each absolute difference

by the negative hypergeometric density associated with the BETA model. ThiS

weighting was especially valuable for the longer tests. Consider the 100-item

test with E X/n = .75. From empirical data and according to the density func-

tion, there are Very rew, if any, examinees who score below 20 on this test;

SeeMS clear that some function is necessary that avoids weighting differences

at Scores belOW 20 in the Same Way as differences around the mean observed

score Otherq1Se. mean - absolute- differences could fail to reflect the nature

of the differenceS that OttUr in practicd.

An obvious trend in Table 5 is the decrease in mean - absolute - differences

With an increase in number of items. Of course, the intervals are also shorter

fOr the lOnger tests. However, from other calculations; it was found that the

percentage decrease in widths for longer tests is less than the percentage de-

crease in mean-absolute-differences; i.e.; the decrease in mean-absolute-differenceS

is not simply a resultioof a decrease in the widths'of intervals.
f4 A
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Another result from Table 5 i, that the largest means are found for the

contrast of the NORM with the other three models. This is consistent with the

selected limits of Tables 1 through 4. Of these differences, some of the largest

occur with contrasts of the upper limits for the examples with E X/n > .5.

Recall that the other three models have left-Skewed true score distributions

when E X/n > .5. In effect, these results are an indirect indicator of

the fact that for observed scores below the mean the upper limits for the NORM

model are farther frot the mean than those of the other three modelS. A more

direct indicator is the teen difference (with Sign) of the upper limits for

observed scores below the mean. For the examples in which E X/n > .5, mean

differences of upper limits (NORM-others) are all positive. Fdr the two cases

in which E X/n = .5; the means are also positive but much smaller: Table 6

provides means far three exampls.

Insert Table 6 about here

Returning to Table 5, the mean-absolute-differences between the BINORM and

CONORM models (different error variances) do not seem any larger than differences

bet,,,eon the BETA and BINORM models (differences in Shape of the true score dis-

tributions) Recall ghat the larger the value of Si the greater the difference

in error variances between the CONORM model and both the BINORM and BETA models.

ThiS takes the CONORM intervals shorter and slightly less regressed to the moan:

Apparently, the values of S are not large enough to cause important differences

in limits. Since the values of S' used here seem typical of standardized tests,

the small effect of this parameter on the limits can be considered general:
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Thereisaconvenientcontrastoin the examples. Consider the two tests

with n = 35. One has an S2 that is 50% larger than the other. Table 7 pro=

vides the mean WidthS of the intervals for these two examples (the negative

hypergeoMetric density is used for these means also). Notice that the dl-ferences

in mean widths between the BINORM and CONORM models for the test with Si = .027

areabout5mlargerthanthedifferencesimmeariv018.
Still; the differences for the larger S2 represent just 8% of the mean widthS

ofc0N0mihtervals,anddifferencesforthesmallerS4are only 4% of the mean

widths;

InSert Table 7 about here

Table 7 also contains the mean widths of intervals for example with

n = 100. These are provided as an indication of the decrea7S12---i=a-__width that

comes with an increase in n.

Plots of interval widths against observed scores were made for all the

examples. The plots are not included here, but their general nature can be des-

cribed; From Equation 6, the interval widths for the NORM model are constant

across the observed scores. For the other three models, the plotS are similar

and depend on the mean. With E X/n = .5, the interval



widths increase fr,m1 zero to the mean, and then decrease symmetrically from

the mean to 1.0. Around the mean, the widths for the three models are larger

than for the NORM and smaller otherwise: FOi the examples with E K/n = 75;

the intervals are approximately the same width up to the mean; and then they

decrease from the mean to 1.0: They decrease at a faster rate past the mean

than when E X/n = .5 and. end up (at 1.0) with a smaller width.

Differences between the BETA and both the BINORM and CONORM models that

were noted in Table I were found more generally for all examples. Plots of

`-differences in limits against observed scores reveal that the largest differences

between the BETA and both the BINORM and CONORM models occur at very extreme

observed scores; For very low scores, the upper limits of the BETA are closer

to the mean than those of the BINORM and the CONORM. Similarly, for very high

scores, the lower limits of the BETA are cloSer to the mean.

The plots of the differences also revealed that an opposite but slighter

trend occurs for scores that are not extreme: That is; for such scores that

are Lelbw the mean. the upper limits under, the BETA are slightly further from

the mean than under the BINORM; and for.such scores that are above the mean, the

lower limits under the BETA are further from the mean than under the BINORM.

A similar change in trend occurs for the BINORM-CONORM contrast, These resultS

are most apparent for the symmetric true score distributions, and they were noted

in Table 1: For a skewed distribution, the trend is mitigated.

Summary and Conclusions for Tolerance Comparisons

The detailed differences in the tolerance intervals for our examples appear

to follow a pattern, and many of the differences reflect what was expected from

differences in the models. in this sense, the difference can be considered

generalizable to ocher realistic test characteristics.



Thc. NORM model seems inappropriate for number correct

scoring. The bounded nature of a -proportion correct score scale is an

Apparent problem, acid the assumption of independence of error and true score

y.4ithout a transformation) seems unwarranted (Lord, 1960). These issues are

ref ecced differences be:.ween the NORM intervals and the other three models,

e peciallV fbr Shorter tests. But, recall that for longer tests the intervals

are (lUite Similar for all four modtils.

The ;4.ifferenceS among the BETA, BINORM, and CONORM intervals seem unimportant.

BecauSe tha BETA model has been frequently discussed in the literature; appears

useful for a variety of applications, and does not involve approximations, one

might feel satisfied in calculating intervals under the BETA and ignoring the

other two models: However, the intervals that were calculated under the CONORM

were based on KR20, whereas a different estimate of reliability could be incor

porated. In other words; the small differences found between CONORM and BETA

Lr1Lervalswerebasedontypicalvaluesofanc might have been larger if
yi

reliabiiit es were estimated in a different manner.
\-

From the results, there seems tobe little reason to choose the BINORM

over che BETA model for calculating intervals. However, it could serve as a

SUbStitute for the BETA, especially Since the BINORn model has some mathematical

conveniences that might prove useful for the problem of estimating tolerance

interValS with small Sample sizes.

The NORM model is quite distinct from the others; vet the tolerance inter

vals for scores not at the extreme were similar to the other models. Since

average error variances were similar for all four models, the comparisons can be
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considered to be among differences in the sizes of error variance at different

Store levels and in the shapes of true score distributions; One can conclude

that the small differences in intervals, at other than extreme scores, indicate

that tolerance intervals are not very sensitive to differences in shapes

true score distribution or in assumptions about the variability of error Variance

along the true score scale; However, all four models do have regularly-Shaped

distributions and differences among them in error variances, at other than extreme

scores; are not that large.



Comparison of Confidence Intervals

Three error models are used for calculating confidence intervals in the

taample beloW: normal error with' equal variance for all examinees, binomial

error, and cbtpound=binorilial error.

The normal intervals are of the form

:min
:J./2 e

Notethat-:_is calculated through a KR20 for the examples below, and the same
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(17)

values of :7._ wero ,used for the NORM model tolerance intervals in Tables 1 through 4.

For the binomial error model; there are many published tables?pecifically

developed for confidence intervals on a binomial parameter. See Kendall and

Stuart (1979, p. 129); and Johnson and Kotz (1969, p; 59) for references; How-

ever, none of the available tables provide confidence intervals for the 50% and

68% coefficients, so these calculations had to be performed for this paper. The

calculations are Straightforward enough to be generally useful. Some details

AbbLit the calculation of these intervals are reported below to allow an analytic

comparison with tolerance intervals under the BETA Model.

Most of the published tables on binbmial confidence intervals were generated

by solving the following equations for the lower (L) and upper (U) limit§ of the

intervals:

7-1" (J Li (1 - L)n-i = :t/2 (18)
j=x



j=0

Here,

(1 - U)n-3 a, /

is the observed number of successes (correct) in n trials (items

Because of the discrete nature of the binomial, it is not possible, in

general, to construct intervals with a particular coefficient. Intervals con-

structed from Equations 18 and 19 do have a coverage probability greater than

or equal to 1 ; i.e.,

(19)

P(L 7 E U) 1 - a (20)

where 7 is the binomial parameter and L and U are now considered random variables

that are functions of X rather than 3t Kendall and Stuart (1979; pp. 113-116 and

129-131) provide a discussion about the issue of inexact intervals for the

binomial; And Wilks (1962; p. 368) provides a general theorem for setting con-

fidence intervals for discrete variables.

Intervals constructed from Equations 18 and 19 are referred to as central

intervals. This is because, in addition to the claim Made in Equation 20,

?(L 7) = 1 /: and P(U > > 1 - a/2 . These two additional

statements seem to be a desirable feature of confidence intervals, and most

tables are set up thiS way. However, by relinquishing these two claims, i.e.,

only requiring Equation 20 to hold, shorter noncentral intervals can be calculated.

Crow (1956), among others, provides such intervals:
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Equations 18 and 19 can be expressed in terms of the cumulative distribu-

tion function of a beta. Equation 18 can be written as

I-
L
(x n x + 1) = a/2

'

Thus, one can enter a beta table to find the L that corresponds to a/2 or as

was done for the tables below, use a computing routine air finding the inverse

of a beta [IMSL (1979) SubrOutihe MDBETI]. Similarly, for Equation 19, the

upper limits can be determined by Solving

(21)

x, x + 1) = (22)I
(1. - lil

for U. The F distribution can also be used; see Johnson & Kotz, 1969, p. 59.)

Recall Equation 7 for the lower limit of a tolerance interval under the BETA.

Note that if a = 0 and b = 1 in that equation, it would ccual Equation 21;

making equal the lower limits of the binomial cOnfidenCe interval and the BETA

tolerance interval. Eq%ation 8 for the upper tolerance liMita can be reexpreaSed

as 1 (b + n - x, a + x) = a/2 . Note that a = 0 and b = 1 do not make

this equal to Equation 22. Clearly, it is not possible to choose the a and b

paramecers of the true score distribution such that the confidence and tolerance

Limit, are the same. This is not surprising given the different nature of the

intervals. COnFider also that under the binomial we can only make inequality

statements because the coverage probability is a function of the discrete variable X

Crider the BETA model, we make exact coverage probability statements because the

x is continuous.
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For compound - binomial error, the two-term approximation which was dis-

cussed under the CONORM model was also used for error variance here; Recall that

error variance under the approximation is (n - 2k)/(4n2 + 2n), where k was

'hosen to make average error variance the same as that calculated from a KR20.

Also; recall that this made average error variance the same for the CONORM and

NORM models;

Intervals for the compound-binomial are only approximations. The Freeman-Tukey

transformation was used to yield approximate normality with constant variance.

Intervals were then calCulated [g z(-1/i[(n - 2k)/(4n2 2n)] , a continuity

correction was added, and a transformation back Co the proportion correct scale

was applied.

Two Examples

Two tables are provided for comparison of confidence intervals under the

three error ModelS. Table 8 contains intervals for a test with n = 35. 17-.!

error variance, , for the normal error model corresponds to error variance under

the NORM Model for Table 1.. Similarly; the same value of k was used in Tables 1 and

3. Table 9 has n = 100 and corresponds to parameters used in Table 4.

Insert Tables 8 and 9 about here

From TableS 8 and 9, confidence intervals under the three models are similar

except at extreme scores. At the extreme score of 35, for example, all three

error models have quite different limits; Typically, the normal error intervalS
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extend beyond 1.0 and are much wider than intervals for the other two models.

The compoUnd-binomial intervals at 1.0 appear quite short relative to the

binomial. This is not true at other observed scores, and seems to reflect prob=

lems with the properties of the transformation or the approximation§ at this

extreme score.

At other observed scores the binomial intervals are, for the most part,

longer by .01 or the same as the compound- binomial intervals. This reflects

the ditterence in error variance under the two models. Recall that k depends on

SiAnd that k for Table 8 is associated with the largest Si in the examples.

AlSo, k for Table 9 is the largest among all the examples.

Etror distribution shapes affect the intervals in Table . Under the nor=

Mal error distribution, the intervals are symmetric about the proportion correct

score. In contrast; under the other two models, the distributions are

skewed toward .5. For these two models, the lower limits are more distant from

the observed score than the upper limits when the observed score is above the mean.

"f!le reverse holds for scores below the mean. This is not as noticeable for n 100

in Table 9.

comments -on -th-e -Binomdal Error MndeI

Under special circumstances, the binomial error model can be said to hold

by definition (Lord & Novick, 1968, chap. 11,& chap: 23, p. 524; Lord, 1957).

If test forms are constructed by random sampling of items and the proportion cor-

rect true score of interest is defined by the domain from which items are

sampled (rather than for a particular sample of items); the binomial error model

holds for any particular examinee as long as item responses are independent from
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One item to the next for.that examinee (independenc of responses is violated

by context and other similar effects). Gross and Schulman (1980) provide a suc-

cinct justification of the binomial under such circumstances, and contradict

some statements made by van der Linden (1979) in his claim of deterministic

assumptions underlying the binomial;

The binomial error model is often criticized because items are not the same

difficulty; It is true that the binomial distribution cannot be used for the

joint distribution of error of examinees that are administered the same set of

items. Errors are correlated across examinees. But when we isolate interest to

a particular examinee under the circumstances above (random sampling of items,

etc.), the diStributibn of observable scores for that examinee is bihoMial and

_7
it follows that confidence intervals based on the binomial are apprOpriate; Of,

course, this does not consider the nature of errors made in providing such con-

fidence intervals for the set of examinees administered the same test form;

In any case, tests are not typically constructed by random sampling; For

example; items are frequ ntly sampled from fixed categories (Jarjoura & Brennan,

1982, provide a model forsuch circumstances). Also, test form difficulty and

other adjustments are typical of standardized testing. It is'Usuallyjudged that

these factors make average error smaller than under the binoMial, and binomial in-

tervals are often viewed as conservative. Still, violation of other assumptions,

like independence of item responses for an examinee, can make error larger than

under the binomial. Binomial intervals can be considered a useful approximatiOn

as long as average error variance, estimated without res9rting to binomial assump-

tions, agrees with that estimated under the binomial - KR21]6.2 -); and as long
X/n

as there is no evidence that error variances at different points along the score

scale are larger than under the binomial.

4 5
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Comparison of Confidence and Tolerance Intervals

A comparison of Tables 1 and 8 provide an idea of differences between con-.

fidence and tolerance intervals under the same test characteristics. For the

binomial, the fact that n = 35 is enough to allow comparisons across the tables.

Recall that average error variance from the KR20 of Table I was used in deter-

mining error variance for the normal and compound-binomial intervals;

Contrasts between the BETA tolerance intervals and binomial Confidence

intervals reveal, as expected; that tolerance intervals are typically narrower

and shifted from the observed score toward.the mean. Differences in limits are

most apparent at extreme scores; Note that the contrast in interval widths

reverses at the extreme score of I.O. Similar differences are found for con-

trasts between the normal and NORM intervals and between the compound-binomial

and CONORM intervals The BETA intervals of Table 2 can also be compared

directly with the binomial intervals of Table 8. Here, we find some large dif-

ferences at the low scores that are distant from the mean.

Direct comparisons can also be made between Tables 4 and 9. Recall that

with n = 100, tolerance intervals for all four true score models are quite

similar. In contrast, differences between confidence and tolerance intervals

are large at scores that are distant from the mean. Consider, for example, the

observed score of:20; There, 50% confidence and tolerance intervals do not

even overlap, and for 68% intervals, the upper limits of the confidence intervals

are the same or close to the lower limits of the tolerance intervals. The major

reason for such a difference is that the obServed Score (20) is approximately 3.7
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Standard deviations below the mean (75); This difference might be considered

unimp "rtant because examinees do not score that low (empirically no one has

scored this low on current forms of this example test). But the contrast does

dramatize points made earlier; When we are conditionally interested in examinee

a, then; from the perspective taken here, we are isolating interest in that

examinee's distribution of observed scores, not in the distribution of scores of

other examinees. This is not to say that information about other examinees

cannot be used in interpreting a confidence interval. The point is that if we

want a confidence interval for a particular examinee, then that interval is not

designed to take the performance of other examinees into consideration: In

contrast, when we condition on obSerVed score, We are formally interested in

observations from the population of examinees; i.e., in the associated distri

bution of true scores. Information that an observed score is very unlikely

is obviouSly important and affects the nature of the tolerance interval.
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Discusslon

Such strong assumptions as used for setting tolerance or confidence inter-

vals need to be checked; Some methods for checking are discussed below -. Also,

Bayesian credibility intervals and confidence and tolerance intervals are con-

trasted.

Checking Assumptions

All four true score models are specific about what to expect for observed

score diStributionS. Thus, the usual chi-square test of fit could be calculated and

differences between observed and expected frequencieS examined. None of these

models are likely to closely fit observations. However, consider the possibility

that the. BETA fits but the BINORM does not. Under such tircuMstances, one would

prefer the BETA tolerance intervals, but; from the results above; they would not

differ substantially from those of the BINORM;

If one assumes that an approximate compound-binomial error model is appro-

priate; then procedures developed in Lord (1969) and implemented in a contputer

Orb-gram b Winger-sky, LeeS, Lennon; and Lord (1969), can be used to estimate a

"smooth" true score distribUtion without specifying its fOrm. ThiS could be

compared to a beta or the other true score distributions assumed in the todelS

above in order to determine if there are large discrepancies. For example, the

estimated distribution might be noticeably bi-modal or tight be truncated at

some point above zero. Clearly, this could cause problems in tolerance intervals.

Lord and Stocking (1976) derive a procedure for setting simultaneous confidence

intervals around the conditional means for true scores at every observed score;

They assume the binomial error model but do not specify the true score distri-

bution. These intervalS could be compared with the conditional means that are

specified by each of the four true score todelS. AlSo, Wilcox (1981) reviews

procedures for checking the beta-binomial assumptions.

For the BETA; BINCRM; and CONORM models; the true score distribution is

bounded by zero and one; The possibility of guessing correctly in multiple choice
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tests is often considered to imply that true scores do not extend down to zero.
7

Also; evidence of this effect has been found by Lord (1965) in using a four

parameter beta distribution for true scores (two of the parameter, are end-

points); For a true score distribution that ends, say, at .15, tolerance

intervals of number correct scores near zero would obVioUSly be affected. This

is rather unimportant if few examinees score near or below a guessing level

(as is the case in most of the example tests above). Otherwise, a nonzero

end -point ShOuld be considered in setting tolerance or confidence intervals.

Perhaps the most important checking is with regard to measurement error

variance. Both confidence and tolerance interval widths are, the most

part, determined by error variance. And, under the above models, assumptions

about error variance are quite strong. These assumptions could be che-ckiAd

if deemed appropriate, by obtaining realized values of the error variable in

a parallel forms study. A simple check on the binomial or the approximation

to the compound - binomial error variances would involVe transforming the ob-

served scores (Freeman-Tukey), estimating error variance for appropriate ranges

of observed scores, and comparing these with the constant values specified by

the two models. If the estimated error variances are fairly constant but

different from that specified under either model, this constant could be used

E6e estimating k differently from that given in Equation 16.

aevesian Credibillty Intervals

With a Bayesian approach; we can isolate interest in a pattitular

examinees true score and still interpret an interval set up for that true

score as covering a proportion of a distributiOn (posterior) of that true

score for a given observed score or scores. This is because we start with a

Note that true score is defined here as the expected proportion correct,

not the expected proportion an examinee knows without guessing,

49
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diStribUtien (prior) for the true score. This is in contrast with a confidence

Interval that does not consider a distribution for the true score. In a sense,

a Bayesian approach appears to provide a more informed statement or inference

because it uses information besides an examinee's observed score in determining

an interval for that examinee. As argued above, a confidence interval seems use-

ful in the situation in which a career counselor or classroom teacher is inter-

preting a particular examinee's score. How a confidence interval ends up being

Interpreted will likely depend on all the-other information a counselor or

teacher has about that examinee and perhaps information about the performance

of other examinees. In this sense, a confidence interval can be considered a

less formal method of inference as compared to a credibility interval.

Although a conceptual distinction exists between tolerance and credibility

intervals, they ,can be made to coincide numerically. Consider that tolerance

intervals under the BETA model are the same as central credibility intervals

in the case in which every examinee is given the same prior (beta[a, b], where

a and b are population parameters for the true score diStribution) and the

Conditional distribution Of observed scores is assumed binomial. It is not'.

clear that they could be made the same when estimaticn issues are considered

for tolerance intervals.

Conclusions

In consideration of issues regarding intervals for true scores, confidence

intervals seem useful when score interpretation is intimately concerned with a

Particular examinee. In contrast, a tolerance interval is quite infortatiVe

for interpreting a particular observed score with respect to a population Of

examinees. Also, knowledge that examinees who obtain a particular observed

score likely haVe true scores within a 95% tolerance interval is a useful=

adjunct to a confidence interval for a particular examinee.

The claim that a confidence interval procedure covers; on average; the

true scores of a population of examinees with some chosen probability depends
0
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on weak assumptions; It is not a very informative claim with respect to a

particular examinee; If such a claim is the basis for interpreting confidence

intervals; their usefullness for a particular examinee is diminished. Further,

when a population of examinees are considered in the interpretation of an

observed score, tolerance intervals are to be preferred.

Tolerance intervals provide simultaneously information about the discrimina-

tion afforded by a measurement procedUre for some population of examinees and

information ehoUt the precision of measurement. Consider the possibility of

narrow tolerance intervals relative to the proportion correct scale (high precision)

combined with few, if any, nonoverlapping tolerance intervals in the probable

range of observed scores (low discrimination); This possibility can be trans-

lated simply to low reliability and small error variance (relative to the propor-

tion correct scale); but it does much to clarify the meaning of such a Statement.

Confidence intervals are lacking in this regard.

Because tolerance intervals require the specification of the true score dis-

tribution conditional on observed score, it was necessary to address the issue of

sensitivity of the intervals to differing strong assumptions about the joint

distribution of observed and true scores. For realiatic standardized test

characteristics, tolerance intervals are, fer the most party insensitive to

differences in the shapes of true score distributions and to small differences

in error variances And reliabilities. In contrast, it is clear that confi-

dence and tolerance intervals are quite distinct, especially for scores not close

to the mean.
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TABLE 1

Tolerance_ Intervals for n = 35;

a2 = .0423; and Si =
E X/n =
.027

.5i

Obs. x N.H.
ScorenDens.

BETA BINORM CONORM NORMCoeff.LULULULU
50% 20 29 21 30 20 29 19 28

7 .2 .024 68% 18 31 19 32 19 '31 17 31

95% 13 38 13 39 14 38 10 37

50% 36 47 37 47 37. 47 37 46

14 (-146 68% 34 49 34 50 35 49 34 48'

95% 27 57 28 57 28 56 28 55

50% 53 64 53 63 54 63 54 63.

21 6 .046 68% 51 66 51 66 51 65 52 66

'95% 43 73 43 72 44 72 45 72

50% 71 80 70 79 71 80 72 81

28 .8 .024 68% 69 82 68 81 69 81 69 83

95% 62 87 61 87 62 87 63 90

50% 91 96 94 98 95 98 89 98

35 1.0 .001 68% 90 97 93 99 94 99 87 101

95% 83 99 88-100 90 100 ao 107

Note. KR20 = .87, KR21 === .86, k = 2.2,
beta a = 2.953,and beta b = 2.953; Decimal points on
limits are omitted.
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TABLE 2

Tolerance Intervals for n = 35, E X/n
oX/n: = 0227, and 32: = .018

= .75,

Obs. x N.H.
ScorenDens.

BETA
Coeff. L U

BINORM
L U

CONORM
L U

NORM
L U

50% 27 36 28 33 27 36 26 34

7 2 .001 68% 25 39 26 40 25 38 25 36

95% 19 46 20 47 19 45 19 42

50% 42 53 44 54 43 53 42 51

14 4 .008 68% 40 55 42 56 41 55 41 53

95% 33 62 35 63 34 o2 35 58

50% 58 68 59 69 59 68 59 67

21 6 .038 68% 56 70 57 71 55 70 57 69

95% 49 77 50 77 30 76 51 74

50% 75 83 74 83 75 83 75 83

28 .8 .075 68% 73 85 72 84 73 84 73 85

95% 66 90 66 89 66 89 68 91

50% 93 97 95 98 95 99 91 100

35 1.0 .018 68% 92 98 94 99 94 99 89 101

95% 87 99 90 100 91 100 84 107

Note. KR20 = .81, KR21 = .79, k = 1.9;

beta a = 7.109, and beta b = 2.370. ID-e-c-7.a1 points on
limits are omitted.
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TABLE 3

Tolerance_ Intervals for n E X/n =
o2
X/n

= ;0444; and S2 = .027

Obs. x N.H. BETA BINORM CONORM NORM
ScorenDens. Coeff. 'L U L U L U L U

50% 20 31: 22 32 21. 31 20 30

5 2 .034 68% 18 34 19 35 19 34 17 33

95% 12 42 13 43 13 41 10 40

50% 36 48 37 48 37 48 36 47
10 .4 :063 68% 33 51 34 51 34 51 34 50

95% 25 59 26 60 27 58 26 57

50% 52 64 52 63 52 63 53 64

15 6 .063 68% 49 67 49 66 50 66 51 66

95% 41 75 41 74, 42 73 43 74

507 69 80 68 78 69 79 70 80

20 .8 .034 68% 66 82 65 81 66. 81 67 83

95% 58 88 58 88 57 87 60 90

50% 87 94 91 97 92 97 86 97

25 1.0 .003 68% 85 95 39 98 91 98 84 100
95% 78 98 84 100 86 100 76 107

Note. KR20 = .83, KR21 = .81, k = 1.6,
beta a = 2.985, dd.?. beta b = 2.985. Decimal points on
limitS are omitted.
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TABLE 4

Tolerance Intervals for n = 100; E X/n = .75,
u2 .0119; and S2 = .020

Obs. x N.H. BETA BINORM CONORM NORM
U _LU L U L U

50% 25 31 25 31 25 30 25 30

20 2 .000 68% 24 32 24 32 24 31 24 31

95% 21 37 21 37 20 35 20 35

50% 42 48 43 49 42 48 43 47

40 .4 .001 687 41 50 41 50 41 50 41 48

95% 36 54 37 55 37 54 37 52

50% 59 65 60 66 59 65 60 65

60 .6 .013 68% 58 67 58 67 58 67 58 66

95% 53 71 54 71 54 70 55 69

50% 77 82 77 82 77 82 77 82

80 8 ;036 68% 76 83 75 83 76 83 76 83

95% 72 86 71 86 72 86 72 87

50% 95 98 98 99 98 99 94 99

100 1.0 .000 68% 95 98 97 99 98 100 92 100
95% 92 99 96 100 96 100 90 104

Note. KR20 = ;87; KR21 = .85; k = 6;2;
beta a = 13;137; and beta b = 4;379; Decimal points
on limits are omitted.



TABLE 5

Mean-Absolute-Differences of Tolerance Limits
for Seven Test Characteristicsa

55

Test
BETA-
BINORM

U

BETA-
CONORM
L U

BINORM-
CONORM
L U

BETA-
NORM
L U

BINORM-
NORM
L U

CONORM-
NORM
L U

a=25 EX/n=.50 50% 9 9 6 6 5 5 6 6 12 12 8 8

u2(X/n)=.044 68% 8 8 6 6 '6 6 9 9 14 14 9 9

S2(i)=.027 95% 6 6 11 11 8 8 18 18 21 21 15 15

n=25 EX/n=.75
b

50% 8 8 5 7 4 4 4 10 7 14 5 11

u2(X/n)=.024 68% 8 7 4 7 5 4 7 13 8 18 7 14

S2(i)=.018 95% 7 4 9 5 6 5 18 27 17 30 15 28

.ft=35 EX/ft=.50 50% 7 7 5 5 4 4 5 5 9 9 6 6

o2(X/n)=.042 68% 6 6 5 5 5 5 7 7 11 11 8 _8

52(i)=.027 95% 5 5 9 9 8 8 16 6 18 18 13 13

h=35 EX/h=.75 50% 6 6 4 5 3 3 4 9 6 12 4 9

d2(X/n)=.023 68% 6 5 4 5 4 3 7 12 7 15 6 13

S2(i)=.018 95% 5 3 8 5 6 5 17 24 15 26 13 24

h=50 EX/h=.60 50% 4 4 3 3 2 2 3 3 3 5 9 4

72 (X/n)=.029 68% 4 4 3 4 3 3 4 4 4 7 3 6

S2(i)=.020 95% 3 3 7 5 5 5 7 10 7 13 5 12

n=75 EX/n=.60 50% 3 3 2 2 2 2 2 4 3 6 2 4

J2(X/n)=.023 68% 3 2 3 3 3 4 5 4 7 3 5

S2(i)=.022 95% 6 .5 5 5 8 10 8 19 5 9

n=100 EX/n=.75 50% 2 1 1 2 2 2 3 3 2 4 2 9

32(X/n)=.012 68% 2 2 2 3 2 2 4 4 3 5 2 2

S2(i)=.020 95% 2 1 6 4 5- 4 8 9 7 10 5 4

deans are in thousandths; i.e,. 5=.005.
bDerived from example test with n=35, EX/n=.75.
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TABLE 6

Mean Differences of Upper Limits
Rar Observed Scores Below the Mean

BETA=
NORM

E X/n = .5
BINORM- CONORM-
-NORM-NORM

E X/n = .75
BETA- BINORM- CONORM-
acam_tioam__NoRm_

50% .005 .010 .004 .017 .019 .014

n=35 68% .007 .012 .005 .020 .023 .018
95% .017 .019 .008 .026 .029 .023

50% ;007 .013 ;006 ;022 .024 .018

n=25-68% .009 .016 .007 .025 .027 .021

95% .020 .022 .009 .029 .033 .026
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TABLE 7

Mean Widths of Intervals

Test CharacteriSticS BINORM CONORM NORM

n=35 EX/n=.5 50% .098 .097 .091 ;092

o2(X/n)=.042 68% .144 .143 .135 ;137

S2(i)=.027 95% .281 .277 ;262 ;267

KR20=.87

n=35 EX/n=.75 50% .083 .0E2 .078 ;080

o2(X/n)=.023 68% .121 .121 .115 ;118

S2(i)=.018 95% .237 .234 .224 .232

K820=.83

u=100 EX/n=;73 50% .052 .052 .049 .053

7;2(X/n)=;012 68% .077 .077 .072 .078

S2(i)=;020 95% .151 .150 .141 .153

KO=.87
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TABLE

Conf4_dence Intervals for n = 35

Obs. x

Score n Coeff.
Binomial
L U

Normal Comp.-Bin.
L U L U

50% 15 27 15 25 15 26

.2 68% 13 29 13 27 13 28

95% 8 37 6 34 8 35

50% 33 47 35 45 33 47

14 .4 68% 31 50 33 47 31 50

95% 24 58 26 54 24 57

50% 53 67 55 65 53 67

21 .6 68% 50 69 53 67 51 69

95% 42 76 46 74 43 76

50% 73 85 75 85 74 85

28 .8 68% 71 87 73 87 72 87

95% 63 92 66 94 65 92

50% 96 100 95 105 99 100

35 1.0 68% 95 100 93 107 98" 100

95% 90 100 86 114 95 100

Note: Decimal points on limits are omitted.
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TABLE 9

---Do-nfldence Intervals-for n = 100

Obs. x

Score n Coeff.
Binomial
L U

Normal
L U

Comp.Bin.
L U

50% 17 23 17 23 17 23
20 .2 68% 16 25 16 24 16 24

95% 13 29 13 28 13 28

50% 36 44 37 43 36 44

40 68% 35 46 36 44 35 45
95% 30 50 32 48 31 50

501 56 64 , 57 63 56 64
60 6 68% 5h 65 56 64 55 65

95% 50 70 52 68 50 69

50% 77 83 77 83 77 83

80 .8 68% 75 84 76 84 76 84

95% 71 87 72 88 72 87

50% 99 100 97 103 100 100

100 1.0 , 68% 98 100 96 104 99 100

95% 96 100 92_ -108 98 100

Note: Decimal points on limits are omitted


